学习经历
2006.09 – 2011.08 美国加州大学河滨分校(UCR)理学博士无机化学专业
2000.09 – 2003.06 汕头大学工学硕士工业催化专业
1995.09 – 1999.06 湖北三峡学院(现名三峡大学)理学学士化学教育专业
工作经历
2021.05 – 至今 bet体育365官网网站教授 / 博士生导师
2012.06 – 2021.04 苏州大学教授 / 博士生导师
2011.09 – 2012.04 美国加州大学河滨分校博士后
2003.07 – 2006.08 汕头大学助教 / 讲师
研究方向
主要研究兴趣涉及功能配合物和晶态微孔框架材料的合成研究、半导体团簇光物理机制研究、面向药物中间体的有机光催化应用研究、面向“双碳”目标的二氧化碳光还原研究。长期从事晶态杂化微孔框架材料和半导体纳米团簇等化学材料领域的基础性研究工作,尤其在构建半导体纳米团簇中“精确位点-性能”构效关系、实现分立团簇的溶液离散化和催化应用、以及拓展晶态半导体框架材料多功能化应用方面(光致电致发光、吸附分离、X射线光导探测、电催化和光催化),做出了诸多开创性贡献。
主要论文
1. Atomic- and Molecular-level Modulation of Mn2+-related Emission Using Atomically-precise Metal Chalcogenide Semiconductor Nanoclusters, Wang, Z. Q.; Liu, J.-X.; Ma, H.; Xu, Y.-L.; Zhou, R.; Li, D.-S.; Yuan, S.-F*.; Wu, T.* Coord. Chem. Rev. 2024, 510, 215844.
2. Interface Microenvironment Mediates Emission of Semiconductor Nanocluster via Surface-Dopant-Involved Direct Charge Transfer, Wang, Z. Q.++; Ma, H.++; Zhang, J. X.++; Lan, Y. J.++; Liu, J.-X.; Yuan, S.-F.; Zhou, X.-P.; Li, X. H.; Qin, C. C; Li, D.-S.; Wu, T.* Chem. Sci. 2023, 14, 10308−10317. [++These authors contributed equally to this work]
3. Atomic-Level Insights into Manganese-Environment-Related Photophysical Properties of II-III-VI Quantum Dots Using Well-Defined Nanofragments, Zhang, J. X.++; Wang, J.++; Li, J.++; Debnath, T.++; Zhou, R.; Wang, Z. Q.; Xu, L. H.; Wang, X.; Qin, C. C.*; Xu, D. G.*; Yang, S. R.; Li, M. D.; Li, D.-S.; Wu, T.* J. Phys. Chem. C. 2023, 127, 15951−15961. [++These authors contributed equally to this work]
4. Atomically Precise Metal Chalcogenide Supertetrahedral Clusters: Frameworks to Molecules, and Structure to Function, Zhang, J. X.; Feng, P.*; Bu, X.; Wu, T.* Nat. Sci. Rev. 2022, 9, nwab076.
5. Ultrastable Anti-Acid “Shield” in Layered Silver Coordination Polymers, Sun, P. P. ++; Xie, M. ++; Zhang, L.-M.; Liu, J.-X.; Wu, J.; Li, D.-S.; Yuan, S.-F.*; Wu, T.*; Li, D.* Angew. Chem. Int. Ed. 2022, 61, e202209971. [++These authors contributed equally to this work]
6. A Chalcogenide-cluster-based Semiconducting Nanotube Array with Oriented Photoconductive Behavior, Tang, J. Q.++; Wang, X.++; Zhang, J. X.++; Wang, J.; Yin, W. J.; Li, D.-S.; Wu, T.* Nat. Commun. 2021, 12, 4275. [++These authors contributed equally to this work]
7. Minimized External Electric Field on Asymmetric Monolayer Maximizes Charge Separation for Photocatalysis, Yang, W. J.; Wang, X. L.; Kong, N. N.; Liu, C. D.; Sun, P. P.; Wang, Z. Q.; Ding, Y. Y.; Lin, H. P.; Li, D.-S.; Wu, T.* Appl. Catal. B: Environ. 2021, 295, 120266.
8. 0D/2D Heterostructure Constructed by Ultra-small Chalcogenide-cluster Aggregated Quaternary Sulfides and g-C3N4 for Enhanced Photocatalytic H2 Evolution, Wu, Z.; Wang, X.-L.; Wang, X.*; Xu, X. F; Li, D.-S.; Wu, T.* Chem. Eng. J. 2021, 426, 131216.
9. 0D/1D Heterostructure for Efficient Electrocatalytic CO2-to-C1 Conversion by Ultra-small Cluster-based Multi-metallic Sulfide Nanoparticles and MWCNTs, Wang, X.; Wang, X.-L.; Lv, J.; Wu, Z.; Zhang, J. X.; Hu, D. D.; Xue, C. Z.; Li, D.-S.; Zhu, X.; Wu, T.* Chem. Eng. J. 2021, 422, 130045.
10. Bifunctional Electrocatalysts Derived from Cluster-based Ternary Sulfides for Oxygen Electrode Reactions, Wang, X.-L.; Wu, Z.; Wang, X.; Xue, C. Z.; Liu, C. D.; Zhang, J. X.; Zhou, R.; Li, D.-S.; Wu, T.* Electrochimica Acta 2021, 376, 138048.
11. Unveiling the Impurity-modulated Photoluminescence from Mn2+-containing Metal Chalcogenide Semiconductors via Fe2+ doping, Wang, Z. Q.; Liu, Y.; Zhang, J. X.; Wang, X.; Wu, Z.; Wu, J.; Chen, N.; Li, D.-S.; Wu, T.* J. Mater. Chem. C 2021, 9, 13680−13686.
12. Metal Chalcogenide Supertetrahedral Clusters: Synthetic Control over Assembly, Dispersibility and Their Functional Applications, Zhang, J. X.; Bu, X. H.; Feng, P. Y.; Wu, T.* Acc. Chem. Res. 2020, 53, 2261−2272. (Cover)
13. New Insights into Mn–Mn Coupling Interaction-Directed Photoluminescence Quenching Mechanism in Mn2+-Doped Semiconductors, Liu, Y.++; Zhang, J. X.++; Han, B.; Wang, X.; Wang, Z. Q.; Xue, C. Z.; Bian, G. Q.; Hu, D. D.; Zhou, R.; Li, D.-S.; Wang, Z. X.; Ouyang, Z. W.; Li, M. D.; Wu, T.* J. Am. Chem. Soc. 2020, 142, 6649−6660. [++These authors contributed equally to this work]
14. A Photoconductive X-ray Detector with a High Figure of Merit based on an Open-Framework Chalcogenide Semiconductor, Wu, S. J.++; Liang, C. Y.++; Zhang, J. X.; Wu, Z.; Wang, X.-L.; Zhou, R.; Wang, Y. X.; Wang, S. A.; Li, D.-S.; Wu, T.* Angew. Chem. Int. Ed. 2020, 59, 18605−18610. [++These authors contributed equally to this work] (Cover)
15. Direct Observation of Charge Transfer between Molecular Heterojunctions Based on Inorganic Semiconductor Clusters, Xue, C. Z.++; Fan, X.++; Zhang, J. X.; Hu, D. D.; Wang, X.-L.; Wang, X.; Zhou, R.; Lin, H. P.; Li, Y. Y.; Li, D.-S.; Zheng, D. Y.; Yang, Y.; Han, K. L.; Wu, T.* Chem. Sci. 2020, 11, 4085−4096. [++These authors contributed equally to this work]
16. Breakdown of Valence Shell Electron Pair Repulsion Theory in an H-Bond-Stabilized Linear sp-Hybridized Sulfur, Wu, J.++; Jin, B.++; Wang, X.; Ding, Y. Y.; Wang, X.-L.; Tang, D. D.; Li, X. H.; Shu, J.; Li, D.-S.; Lin, Q. P.; Wu, Y.-B.; Wu, T.* CCS Chemistry, 2020, 2, 2584−2590. [++These authors contributed equally to this work]
17. Atomically Precise Metal-Chalcogenide Semiconductor Molecular Nanoclusters with High Dispersibility: Designed Synthesis and Intracluster Photocarrier Dynamics, Zhang, J. X.++; Qin, C. C.++; Zhong, Y. S.++; Wang, X.; Wang, W.; Hu, D. D.; Liu, X. S.; Xue, C. Z.; Zhou, R.; Shen, L.; Song, Y. L.; Xu, D. G.; Lin, Z. E.; Guo, J.; Su, H. F.; Li, D.-S.; Wu, T.* Nano Research 2020, 13, 2828−2836. [++These authors contributed equally to this work]
18. S-Doped Ni(OH)2 Nano-Electrocatalyst Confined in Semiconductor Zeolite with Enhanced Oxygen Evolution Activity, Hu, D. D.; Wang, X.; Chen, X. T.; Wang, Y. X.; Hong, Anh N.; Zhong, J.; Xian, H.; Feng, P.*; Wu, T.* J. Mater. Chem. A 2020, 8, 11255−11260.
19. 16 A High-Activity Bimetallic OER Cocatalyst for Efficient Photoelectrochemical Water Splitting of BiVO4, Hu, R. L.++; Meng, L. X.++; Zhang, J. X.; Wang, X.; Wu, S. J.; Wu, Z.; Zhou, R.; Li, L.; Li, D.-S.; Wu, T.* Nanoscale 2020, 12, 8875−8882. [++These authors contributed equally to this work]
20. Hierarchical Heterostructure of SnO2 Confined on CuS Nanosheets for Efficient Electrocatalytic CO2 Reduction, Wang, X.; Lv, J.; Zhang, J. X.; Wang, X.-L.; Xue, C. Z.; Bian, G. Q.; Li, D.-S.; Wang, Y.; Wu, T.* Nanoscale 2020, 12, 772−784.
21. Enhanced Water Dispersibility of Discrete Chalcogenide Nanoclusters with Sodalite-Net Loose-Packing Pattern in Crystal Lattice, Xue, C. Z.; Zhang, L.; Wang, X.; Hu, D. D.; Wang, X.-L.; Zhang, J. X.; Zhou, R.; Li, D.-S.; Su, H. F.; Wu, T.* Inorg. Chem. 2020, 59, 15587−15594. (Cover) [ACS Editors’ Choice]
22. Cooperativity by Multi-Metals Confined in Supertetrahedral Sulfide Nanocluster on Enhancing Electrocatalytic Hydrogen Evolution, Liu, D. L.++; Fan, X.++; Wang, X.; Hu, D. D.; Xue, C. Z.; Liu, Y.; Wang, Y.; Zhu, X.; Guo, J.; Lin, H. P.*; Li, Y. Y.; Zhong, J.*; Li, D.-S.; Bu, X.*; Feng, P.; Wu, T.* Chem. Mater. 2019, 31, 553−559. [++These authors contributed equally to this work]
23. Light-Triggered Evolution of Molecular Cluster toward Sub-nanoscale Heterojunction with High Interface Density, Xue, C. Z.; Zhang, J. X.; Wang, X.; Gu, M.; Zhu, Y. M.; Li, D.-S.; Guo, J.; Liu, Y.; Wu, T.* Chem. Comm. 2019, 55, 8146−8149.
24. A Multivalent Mixed-metal Strategy for Single-Cu+-Ion-Bridged Cluster-based Chalcogenide Open Frameworks for Sensitive Nonenzymatic Detection on Glucose, Zhang, J. X.++; Wang, X.++; Lv, J.; Li, D.-S.; Wu, T.* Chem. Comm. 2019, 55, 6357−6360. [++These authors contributed equally to this work] (Inside Cover)
25. The Largest Supertetrahedral Oxychalcogenide Nanocluster and Its Unique Assembly, Yang, H. J.; Zhang, J.; Luo, M.; Lin, H. P.; Li, Y. Y.; Li, D. S.; Feng, P.; Wu, T.* J. Am. Chem. Soc. 2018, 140, 11189−11192. (Inside Cover)
26. Pushing up the Size Limit of Metal Chalcogenide Supertetrahedral Nanocluster, Xu, X. F.++; Wang, W.++; Liu, D. L.; Hu, D. D.; Wu, T.*, Bu, X.; Feng, P.* J. Am. Chem. Soc. 2018, 140, 888−891. [++These authors contributed equally to this work]
27. Highly Tunable Heterojunctions from Multimetallic Sulfide Nanoparticles and Silver Nanowires, Liu, D. L.; Liu, Y.; Huang, P.; Zhu, C.; Kang, Z. H.; Shu, J.; Chen, M. Z.; Zhu, X.; Guo, J.; Zhuge, L. J.; Bu, X.; Feng, P.*; Wu. T.* Angew. Chem. Int. Ed. 2018, 57, 5374−5378.
28. A Semiconducting Metal-Chalcogenide-Organic Framework with Square-Planar Tetra-coordinated Sulfur, Yang, H. J.; Luo, M.; Wu, Z.; Wang, W.; Xue, C. Z.; Wu, T.* Chem. Commun. 2018, 54, 11272−11275.
29. Monodisperse Ultrasmall Manganese-Doped Multi-metal Oxysulfide Nanoparticles as Highly Efficient Oxygen Reduction Electrocatalyst, Zhang, Y. Y.; Wang, X.*; Hu, D. D.; Xue, C. Z.; Wang, W.; Lin, J.; Yang, H. J.; Wu, T.* ACS Applied Materials & Interfaces. 2018, 10, 13413−13424.
30. Host-Guest Electrocatalyst with Cage-Confined Cu2S Nanoparticles Embeded in Semiconductor Chalcogenide Zeolite for Highly Efficient Oxygen Reduction Reaction, Hu, D. D.; Wang, X.; Yang, H. J.; Liu, D. L.; Zhang, Y. Y.; Xue, C. Z.; Wang, W.; Li, D. S.; Wang, Y.; Guo, J.; Wu, T.* Electrochimica Acta. 2018, 282, 877−885.
31. Exploring the Effect of Intercluster Torsion Stress on Mn2+-Related Red Emission from Cluster-based Layered Metal Chalcogenides, Xu, X. F.; Hu, D. D.; Xue, C. Z.; Zhang, J. X.; Li, D. S.; Wu, T.* J. Mater. Chem. C 2018, 6, 10480−10485.
32. Intrinsic Vacancy Point Defect Induced Electrochemiluminescence from Coreless Supertetrahedral Chalcogenide Nanocluster, Wang, F.++; Lin, J.++; Zhao, T. B.; Hu, D. D.; Wu, T.*; Liu Y.* J. Am. Chem. Soc. 2016, 138, 7718−7724. [++These authors contributed equally to this work]
33. Highly Selective and Rapid Cesium Uptake of Radionuclide Cesium Based on Robust Zeolitic Chalcogenide via Stepwise Ion-Exchange Strategy, Yang, H. J.; Luo, M.; Luo, L.; Wang, H. X.; Hu, D. D.; Lin, J.; Wang, X.; Wang, Y. L.; Wang, S. A.; Bu, X.*; Feng, P.*; Wu, T.* Chem. Mater. 2016, 28, 8774−8780.
34. A Novel Copper-Rich Open-Framework Chalcogenide Constructed from Octahedral Cu4Se6 and Icosahedral Cu8Se13 Nanocluster, Yang, H.-J.; Wang, L.; Hu, D.-D.; Lin, J.; Luo, L.; Wang, H.-X.; Wu, T.* Chem. Comm. 2016, 52, 4140−4143. (Inside Cover)
35. Exploring Mn2+-Location-Dependent Red Emission from (Mn/Zn)-Ga-Sn-S Supertetrahedral Nanocluster with Relatively Precise Dopant Position, Zhang, Q.; Lin, J.; Yang, Y.-T.; Qin, Z.-Z.; Li, D. S.; Wang, S. A.; Liu, Y. P.; Zou, X. X.; Wu, Y.-B.*; Wu, T.* J. Mater. Chem. C 2016, 4, 10435−10444. (Hot paper, Front Cover)
36. Highly Effective Nano-segregation of Dual Dopants in a Micron-Sized Nanocluster-Based Semiconductor Molecular Single Crystal for Targeting White-Light Emission, Lin, J.; Wang, L.; Zhang, Q.; Bu, F.; Wu, T.; Wu, T.*; Bu, X.; Feng, P. J. Mater. Chem. C 2016, 4, 1645−1650.
37. Improving Photoluminescence Emission Efficiency of Nanocluster Based Materials by In-situ Doping Synthetic Strategy, Lin, J.; Hu, D. D.; Zhang, Q.; Li, D.-S.; Wu, T.*; Bu, X.; Feng, P.* J. Phys. Chem. C 2016, 120, 29390−29396.
38. Interrupted Chalcogenide-Based Zeolite-Analog Semiconductor: Atomically Precise Doping for Tunable Electro-/Photoelectrochemical Properties, Lin, J.++; Dong, Y. Z.++; Zhang, Q.; Hu D. D.; Li, N.; Wang, L.*; Liu, Y.*; Wu, T.* Angew. Chem. Int. Ed. 2015, 54, 5103−5107. (VIP) [++These authors contributed equally to this work]
39. Multi-Step Host-Guest Energy Transfer Between Inorganic Chalcogenide-Based Semiconductor Zeolite Material and Organic Dye Molecules, Hu, D. D.; Lin, J.; Zhang, Q.; Lu, J. N.; Wang, X. Y.; Wang, Y. W.; Bu, F.; Ding, L. F.; Wang, L.*; Wu, T.* Chem. Mater. 2015, 27, 4099−4104.
40. Tuning Efficiency of Multi-Step Energy Transfer in Host-Guest Antennae System based on Chalcogenide Semiconductor Zeolite through Acidification and Solvation of Guests, Hu, D. D.; Wang, L.; Lin, J.; Bu, F.; Wu, T.* J. Mater. Chem. C 2015, 3, 11747−11753.
41. Atomically Precise Doping of Mono-manganese Ion into Coreless Supertetrahedral Chalcogenide Nanocluster Inducing Unusual Red Shift in Mn2+ Emission, Lin, J.; Zhang, Q.; Wang, L.; Liu, X. C.; Yan, W. B.; Wu, T.*; Bu, X.*; Feng, P.* J. Am. Chem. Soc. 2014, 136, 4769−4779.
42. Monocopper Doping in Cd-In-S Supertetrahedral Nanocluster via Two-step Strategy and Enhanced Photoelectric Response, Wu, T.*; Zhang, Q.; Hou, Y.; Wang, L.; Mao, C.; Zheng, S. T.; Bu, X.; Feng, P.* J. Am. Chem. Soc. 2013, 135, 10250−10253.
43. Superbase-Route to Supertetrahedral Chalcogenide Clusters, Wu, T.; Bu, X.; Liao, P.; Wang, L.; Zheng, S. T.; Ma, R.; Feng, P.* J. Am. Chem. Soc. 2012, 134, 3619−3622.
44. A Large Indium Sulfide Supertetrahedral Cluster Built from Integration of ZnS-Like Tetrahedral Shell with NaCl-Like Octahedral Core, Wu, T.; Zuo, F.; Wang, L.; Bu, X.; Zheng, S. T.; Ma, R.; Feng, P.* J. Am. Chem. Soc. 2011, 133, 15886−15889.
45. Phase Selection and Site-Selective Distribution by Tin and Sulfur in Supertetrahedral Zinc Gallium Selenides, Wu, T.; Bu, X.; Zhao, X.; Khazhakyan, R.; Feng, P.* J. Am. Chem. Soc. 2011, 133, 9616−9625.
46. Three-Dimensional Covalent Co-Assembly between Inorganic Supertetrahedral Clusters and Imidazolates, Wu, T.; Khazhakyan, R.; Wang, L.; Bu, X.; Zheng, S. T.; Chau, V.; Feng, P.* Angew. Chem. Int. Ed. 2011, 50, 2536−2539.
47. Largest Molecular Clusters in Supertetrahedral Tn Series, Wu, T.; Wang, L.; Bu, X.; Chau, V., Feng, P.* J. Am. Chem. Soc. 2010, 132, 10823−10831.
48. Synthetic Control of Selenide Supertetrahedral Clusters and Three-Dimensional Co-assembly by Charge-Complementary Metal Cations, Wu, T.; Wang, X. Q.; Bu, X.; Zhao, X.; Wang, L.; Feng, P.* Angew. Chem. Int. Ed. 2009, 48, 7204−7207.
49. Zeolite RHO-Type Net with the Lightest Elements, Wu, T.; Zhang, J.; Zhou, C.; Wang, L.; Bu, X. *; Feng, P.* J. Am. Chem. Soc. 2009, 131, 6111−6113.
50. Zeolitic Boron Imidazolate Frameworks, Zhang, J.++; Wu, T.++; Zhou, C.; Chen, S.; Feng, P.*; Bu, X.* Angew. Chem. Int. Ed. 2009, 48, 2542−2545. [++These authors contributed equally to this work.]
51. Variable Lithium Coordination Modes in Two- and Three-Dimensional Lithium Boron Imidazolate Frameworks, Wu, T.; Zhang, J.; Bu, X.*; Feng, P.* Chem. Mater. 2009, 21, 3830−3837.
52. New Zeolitic Imidazolate Frameworks: From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary Ligands, Wu, T.; Bu, X.; Zhang, J.; Feng, P.* Chem. Mater. 2008, 20, 7377−7382.
53. A New Zeolitic Topology with Sixteen-membered Ring and Multidimensional Large Pore Channels, Wu, T.; Bu, X.; Liu, R.; Lin, Z.; Zhang, J.; Feng, P.* Chem. Eur. J. 2008, 14, 7771−7773.
54. Twelve-connected Net with Face-centered Cubic Topology: A Coordination Polymer Based on [Cu12(μ4-SCH3)6]6+ Clusters and CN- Linkers, Li, D.*; Wu, T.; Zhou, X. P.; Zhou, R.; Huang, X. C. Angew. Chem. Int. Ed. 2005, 44, 4175−4178.
科研项目
1. 国家自然科学基金重大研究计划重点项目,92261205,原子精确硫族半导体分子团簇中热电子动力学及其光催化应用研究,2023.01–2026.12,370万元,主持,执行中。
2. 国家自然科学基金面上项目,22071165,锰基半导体纳米团簇的构筑及其荧光调控机制与器件化研究,2021.01–2024.12,63万元,主持,执行中。
3. 国家自然科学基金面上项目,21875150,多元金属硫族簇基电催化剂的制备及其电催化还原反应性能研究,2019.01–2022.12,65万元,主持,已结题。
4. 国家自然科学基金面上项目,21671142,基于金属硫族半导体分子筛主客体复合材料的构建以及主体参与的能量和电子转移机制研究,2017.01–2020.12,65万元,主持,已结题。
5. 国家自然科学基金面上项目,21271135,新型半导体“量子点”材料:金属硫族超四面体簇的离散化和表面功能化,2013.01–2016.12,80万元,主持,已结题。
6. 江苏省科学技术厅杰出青年基金项目,BK20160006,金属硫族纳米团簇及其超结构的构建与功能化研究,2016.07–2019.06, 100万元,主持,已结题。
讲授课程
《现代无机合成化学》(全英)、《无机化学》、《化学与材料概论》、《无机化学实验》、《材料制备与技术》、《化学研究方法专论》、《超分子配位化学》、《化学论文阅读与写作》等。
荣誉与奖励
江苏省第十五批“六大人才高峰”高层次人才(2018年)
苏州市工业园区金鸡湖“双百人才计划”(2014年)
广东省科学技术奖一等奖获得者(2014年)
江苏省“双创计划”个人入选者(2013年)
江苏省“创新团队计划”引进团队核心成员(2012年)
苏州市“高等院校、科研院所紧缺高层次人才”(2012年)
国家级海外高层次青年人才计划入选者(2012年)
国家优秀自费留学生奖(2011年)
社会职务
担任国家自然科学基金委、科技部、江苏省、广东省、福建省科技项目的函评或会评专家;长期担任Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.等学术期刊的审稿人;曾担任《中国化学快报》第五届编委会委员、中国复合材料学会矿物复合材料专业委员会委员。